Thursday, July 2, 2009

Transport Phenomena for Chemical Reactor Design




Transport Phenomena for Chemical Reactor Design
by: Laurence A. Belfiore



Description:

Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp.

Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including:
Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles
The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients
Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers
Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive

In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design.


Tell a Friend

Transport Phenomena




Transport Phenomena, 2nd Edition
by: R. Byron Bird



Description

Transport Phenomenon by Bird, Stewart and Lightfoot is one of the most useful chemical engineering textbook ever written. For nearly five decades now, many chemical engineers have lived by what they learned first through this book. The revised edition makes the book current, though 1960 edition is great introduction to the mass, heat and energy and/or momentum transfer problems.

The basis idea of the book is simple: list the equations useful for a system of problems, say in mass transfer; provide set of assumptions used to arrive at those; suggest possible solutions to the differential equations for practical industry conditions; use correlations derived by researchers where real time data is unavailable and lastly, learn how to adapt solutions for different set of conditions. The book attempts to make problem solving into a set of instructions to be followed, and by sticking to the fundamental assumptions and equations allows one to attack a range of problems relevant to fields as diverse as diffusion transport, biochemical processes, condensation problems for atmospheric physics, chemical kinetics, heat conduction, petroleum extraction and flow of fluids relevant to many processing industries.

We often hailed it as the Bible of Chemical Engineering. Every now and then, (nearly a decade after we first read it) I still hear people say: this problem, or something like it, was in BSL, (the acronym awarded to the book after its authors). Be it Transport texts by Deen or Middleman typically used for graduate school courses, or Incompressible Flow by Patton, the recourse to understanding problems first hand through BSL is always rewarding.

The book comes with a number of solved and unsolved problems. There is no short-cut to becoming a good chemical engineer, except by mastering the art and science of attacking problems. By going through the book meticulously right in your first course, (for in most cases, this is the first chemical engineering text encountered), you can ensure that you will do well in your whole education as chemical engineer.

Recommended reference for all chemical engineers.

Tell a Friend